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Figure 3: Distribution of states visited in the last 100,000 iterations pooling all data from 
1000 sessions with α = 0.15, β = 4 × 10−6. “M” corresponds to the fully collusive price, 
“B” to the Bertrand equilibrium price. 

intermediate level (partial collusion). This is confirmed by Figure 3, which shows the rel-

ative frequency of the different price combinations eventually charged for a representative 

experiment. Prices are rarely as high as under monopoly but are almost always higher 

than in the Bertrand-Nash equilibrium. Price dispersion is low, and firms tend to price 

symmetrically. 

In sum, our algorithms consistently and symmetrically charge supra-competitive prices, 

obtaining a sizable profit gain. 

In view of the robustness of the results with respect to the learning and experimentation 

parameters, to ease exposition we shall henceforth focus on one representative experiment, 

corresponding to α = 0.15 and β = 4 × 10−6 . (This is the experiment illustrated in 

Figure 3.) With these parameter values, sub-optimal cells are visited on average about 

20 times, and the initial Q-value of such cells counts for just 3% of their final value. A 

Nash equilibrium is learned 54% of the times, and the average profit gain is 85%. None of 

these values seems extreme. But at any rate, we have systematically conducted robustness 

analyses with respect to α and β not only for the baseline case but also for the extensions 

considered below so as to confirm that our results are not sensitive to these parameters. 
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5.6. Strategies 

Let us now turn to the issue of what strategies underpin the documented non-competitive 

outcomes. The key question is whether the high prices are the result of the algorithms’ 

failure to learn the static Bertrand-Nash equilibrium or of genuine collusion. The policy 

implications would be radically different: the former means that the algorithms are not 

smart enough, the latter that they are already, in a sense, “too smart.” As AI technology 

advances, in the former case the problem is likely to fade away; in the latter, to worsen. 

At this point, it may be useful to spell out exactly what we mean by collusion. Follow-

ing Harrington (2017), we define collusion as “a situation in which firms use a reward-

punishment scheme to coordinate their behavior for the purpose of producing a supra-

competitive outcome.” That is, what is crucial is not the level of profits as such but the 

way the supra-competitive result is achieved. Even extremely high profit levels may be 

regarded as collusive only insofar as deviations that are profitable in the short run would 

trigger a punishment. 

That Q-learning algorithms actually do learn to collude is suggested by the fact that the 

profit gain tends to increase with the amount of equilibrium play. But the correlation is far 

from perfect,34 so here we set forth two additional, perhaps more compelling arguments. 

First, in economic environments where collusion cannot arise in equilibrium, we find that 

the algorithms learn instead to set competitive prices. Second, going back to settings where 

collusion is possible, we consider exogenous defections and observe how the algorithms 

react. We find that such defections gets punished, and that the punishment makes the 

defections unprofitable. This is perhaps the most direct possible evidence of collusive 

behavior where collusion is tacit. 

5.6.1. Competitive environments 

In certain environments, collusion is impossible by default; in others, it can never arise in 

equilibrium. If the supra-competitive prices that we find were the result of erratic choices, 

or of something other than collusion, then they should also be expected in settings where 

collusion is impossible. In particular, collusion is impossible when k = 0 (the algorithms 

have no memory), and it cannot arise in equilibrium when δ = 0 (the immediate gain 

from defection cannot be outweighed by the loss due to future punishments). As noted in 

Section 3, the previous literature has indeed found supra-competitive prices even in these 

34In particular, increasing exploration initially improves learning and increases profits but eventually 
backfires; the same is true for increasing α. But while for the profit gain the downside of decreasing β 
and increasing α is already evident in Figures 1 and 2, for equilibrium play it only appears for values of 
α and β that lie outside of the interval shown in the figures. 
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Figure 4: Average Profit Gain Δ for α = 0.15, β = 4 × 10−6 

settings, which poses the question of how to interpret the findings in economic terms. 

In this respect, our results are quite different.35 Consider first what happens when the 

algorithms get short-sighted. Figure 4 shows how the average profit gain varies with δ. 

The theoretical postulate that lower discount factors, i.e. less patient players (or else 

less frequent interaction), impede collusion, is largely supported by our simulations. The 

profit gain indeed decreases smoothly as the discount factor falls, and when δ = 0.35 it 

has already dropped from over 80% to a modest 16%. 

At this point, however, something perhaps surprising happens: the average profit gain 

starts increasing as δ decreases further. Although the increase is small, it runs counter 

to theoretical expectations. This “paradox” arises because changing δ affects not only 

the relative value of future versus present profits, but also the effective rate of learning. 

This can be seen from equation (4), which implies that the relative weight of new and old 

information depends on both α and δ. 36 In particular, a decrease in δ tends to increase the 

effective speed of the updating, which as noted may impede learning when exploration is 

extensive.37 Figure 4 suggests that if one could abstract from this spurious effect, collusion 

35The difference might be due to the fact that we use a different economic model, and our algorithms 
are allowed to learn more effectively, than in previous studies. 

36Loosely speaking, new information is the current reward πt, and old information is whatever infor-
mation is already included in the previous Q-matrix, Qt−1. The relative weight of new information in a 

π steady state where Q = then is α(1 − δ). 1−δ 
37A similar problem emerges when δ is very close to 1. In this case, we observe another “paradox,” i.e., 
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would tend to disappear when agents become short-sighted. 

Turning to the case of memoryless algorithms, we find profit gains of less than 5%. These 

are almost negligible and do not vanish altogether simply because our discretization of 

the strategy space implies that the one-shot Bertrand equilibrium can at best be approx-

imated. 

All of this means that the algorithms do learn to play the one-shot equilibrium when this is 

the only equilibrium of the repeated game. If they do not play such competitive equilibrium 

when other equilibria exist, it must be because they have learned more sophisticated 

strategies. 

5.6.2. Deviations and punishments 

To look into how these strategies are structured, we perturb the system once the learning 

is completed. That is, upon convergence we step in and manually override one agent’s 

choice, forcing it to defect. We impose not only defections lasting for a single period but 

also defections lasting several periods; and defections both to the static best-response and 

to smaller price cuts. For all of these cases, we then examine the reaction of both agents 

in the subsequent periods. In a word, we derive impulse-response functions. 

Figure 5 shows the average of the impulse-response functions derived from this exercise for 

all 1000 sessions of our representative experiment. It shows the prices chosen by the two 

agents τ periods after the deviation. In particular it depicts the evolution of prices (top) 

and profits (bottom) following agent 1’s one-period deviation to the static best-response 

to the pre-deviation price. 

Clearly, the exogenous deviation gets punished. The punishment is not as harsh as it 

could be (e.g., a reversion to the static Bertrand-Nash equilibrium), and it is only tem-

porary: in the subsequent periods, the algorithms gradually return to their pre-deviation 

behavior.38 This pattern seems natural for Q-learning algorithms. These algorithms exper-

iment widely, at least initially, so it would be difficult to sustain collusion if any defection 

triggered a permanent switch to the one-shot Bertrand equilibrium. 

But in any case, the punishment is harsh enough to make the deviation unprofitable as 

illustrated by the evolution of profits after the shock in Figure 5 (bottom). Evidently, 

agent 2’s retaliation wipes out agent 1’s profit gain already in the very next period: that 

is, incentive compatibility is verified. 

the average profit gain eventually starts decreasing with δ. This failure of Q-learning for δ ≈ 1 is well 
known in the computer science literature. 

38In fact, prices stabilize on a new level that on average is slightly lower than the pre-deviation one. 
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Figure 5: Prices (top) and Profits (bottom) impulse response, α = 0.15, β = 4 × 10−6, δ = 
0.95. 
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Figure 8: Average % price drop of non deviating agent 2 one period after deviation. 

and β = 4 × 10−6 . 

6.1. Number of players 

Theory predicts that collusion is harder to sustain when the market is more fragmented. 

This is indeed one reason why antitrust authorities regulate mergers: apart from the 

unilateral effects, the concern is that more concentrated markets may be conducive to 

tacit collusion. 

The experimental literature provides some support for this thesis, showing that without 

explicit communication it is very difficult for more than two agents to collude. With three 

agents, prices are typically pretty close to the static Bertrand-Nash equilibrium, and with 

four agents or more they may even be lower.40 

In this respect, Q-learning algorithms would appear to be different. In simulations with 

three firms, the average profit gain Δ decreases from 85% to 64%. With four agents, 

the profit gain is still a substantial 56%. The fact that Δ decreases accords with the 

theoretical predictions; the fact that it decreases so slowly seems to be a peculiar and 

40See for instance Huck et al. (2004). Cooper and Khun (2014) stress the importance of communication 
to sustain collusion in the lab. 
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In principle, the impact of changes in substitutability on the likelihood of collusion is 

ambiguous: on the one hand, when products are more substitutable the gain from deviation 

increases, but at the same time punishment can be harsher. This ambiguity is confirmed 

by the theoretical literature.43 

In our setting, we test the consequences of changing parameter µ from 0.25 (baseline) 

up to 0.5 and down to 0.01, where products are almost perfect substitutes. The average 

profit gain decreases slightly when µ decreases, but when the products are almost perfect 

substitutes (µ = 0.01) it is still greater than 80%. 

6.7. Linear demand 

We repeated the analysis for the case of duopoly with linear demand functions derived 

from a quadratic utility function of the Singh and Vives (1984) type, i.e. 

1 
(11) u = q1 + q2 − (q 1

2 + q 2
2 ) − γq1q2 

2

for various values of the horizontal differentiation parameter γ. The average profit gain 

is non monotone in γ: it is well above 80% when γ is below 0.4 or above 0.9 (when the 

products are fairly good substitutes) but reaches a minimum of 65% when γ is around 3
4 . 

The impulse-response functions are almost identical to those observed with logit demand. 

Other alternative demands could also be tested, of course, but it would seem that the 

results are robust to the demand specification. 

6.8. Finer discretization 

As Section 3 notes, one reason why the repeated prisoner’s dilemma may be a misleading 

approach to the analysis of collusion is that coordination is much easier when there are only 

few possible actions. With two actions only, for instance, there is basically only one way to 

cooperate. As the number of actions and hence strategies increases, the strategy on which 

the players should coordinate is no longer self-evident. Failing explicit communication, 

this could engender misunderstandings and prevent cooperation. 

To determine whether a richer strategy space facilitates or impedes cooperation, we run 

experiments with 50 or 100 feasible prices, not just 15. The average profit gain decreases 

slightly, but with m = 100 it is still a substantial 70%. We conjecture that Δ decreases 

because a larger number of actions and states necessitates more exploration to achieve 

43For example, Tyagi (1999) shows that greater substitutability hinders collusion when demand is linear 
or concave but may either hinder or facilitate it when demand is convex. 
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the same amount of learning as in baseline model. 

We have also considered the case of parameter ξ higher than 10%, but greater flexibility 

in price setting - below Bertrand-Nash or above monopoly - turns out to be immaterial. 

This is not surprising, given that the players never converge on these very low or very 

high prices. 

6.9. Asymmetric learning 

Going back to the baseline environment, we consider the case in which the two algorithms 

have different learning rates α, or different intensity of experimentation. Collusion appears 

to be robust to these changes. For example, when α2 is set at 0.05 or 0.25 with α1 

constant at 0.15, the average profit gain is 82% in both cases. In both cases, the firm with 

lower α gains more, suggesting that setting α = 0.15 still gives too much weight to new 

information. 

We also halved and doubled the value of β for one algorithm only, keeping the other 

fixed at β = 4 × 10−6. In both cases, asymmetry reduces the average profit gain but only 

marginally, remaining well above 75%. The algorithm that explores more underperforms. 

These highly preliminary results for situations in which different algorithms follow differ-

ent learning and exploration strategies suggest that diversity among the algorithms does 

not significantly affect the degree of collusion. 

7. CONCLUSION 

We have shown that in stationary environments Q-learning pricing algorithms systemati-

cally learn to collude. Collusion tends to be partial and is sustained by punishment in case 

of defection. The punishment is of finite duration, with a gradual return to pre-deviation 

prices. The algorithms learn to play these strategies by trial and error, requiring no prior 

knowledge of the environment in which they operate. They leave no trace whatever of con-

certed action: they do not communicate with one another, nor have they been designed 

or instructed to collude. 

From the standpoint of competition policy, these findings should clearly ring a bell. They 

suggest that with the advent of Artificial Intelligence and algorithmic pricing, tacit collu-

sion may become more prevalent, heightening the risk that tolerant antitrust policy may 

produce too many false negatives and so possibly calling for policy adjustments. 

However, more research is needed to confirm the external validity of our findings. Three 

issues stand out: the realism of the economic environment, the speed of learning, and the 
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diversity of the competing algorithms. As for the first issue, we have considered a good 

many extensions of the baseline model, but all separately, the model thus remaining quite 

highly stylized. To produce a more realistic setting for analysis, one should perhaps posit 

a model with several firms, longer memory, stochastic demand and possibly also structural 

breaks. 

Such more realistic environments may however defy the learning capacity of our simple, 

tabular Q-learners. It might therefore be necessary to use algorithms whose learning is 

more efficient - say, deep learning algorithms. This point is related to the second issue 

mentioned above, i.e. the speed of learning. Besides managing more complex environments, 

deep learning can indeed also speed the learning process. This is important, because the 

training of the algorithms cannot always be conducted entirely off-line, and in the short 

run experimentation is costly. On-the-job learning seems necessary, in particular, when the 

economic environment is changeable, or when the training environment does not exactly 

reflect the reality of the markets where the algorithms are eventually deployed. 

One reason why training environments may not be fully realistic is that it is difficult to 

guess what specific algorithms competitors are using. In this respect, here we have re-

stricted attention mostly to training in self-play mode. In reality, there are many different 

forms of reinforcement learning, and Q-learning algorithms themselves come in different 

varieties. It would therefore seem necessary to extend the analysis to the case of hetero-

geneous algorithms more systematically. Our robustness exercises in this direction have 

just scratched the surface of the problem. 

Addressing these issues is clearly an important task for future work. But whatever may 

be done or left undone in the abstract, skeptics may always doubt that algorithms ac-

tually collude in the real world. Ultimately, the issue can only be decided by antitrust 

agencies and the courts. Unlike academic scholars, they can subpoena and extensively 

test the algorithms firms actually use, in environments that closely replicate the specific 

industry under investigation. What academic research can do is help make a preliminary 

assessment: that is, whether opening such investigations is a waste of resources, perhaps 

with the risk of many false positives, or instead may be necessary to fight collusion in the 

age of Artificial Intelligence. This paper is one contribution in this direction. 

 Electronic copy available at: https://ssrn.com/abstract=3304991 



40 ` E. CALVANO, G. CALZOLARI, V. DENICOL O, S. PASTORELLO 

REFERENCES 

[1] Andreoli-Versbach, P. and U. Franck, J. (2015). Econometric Evidence to Target Tacit Col-

lusion in Oligopolistic Markets. Journal of Competition Law and Economics, 11 (2), 463–492. 

[2] Arthur, W. B. (1991). Designing Economic Agents that Act like Human Agents: A Behavioral 

Approach to Bounded Rationality. The American economic review, 81 (2), 353–359. 

[3] Barfuss, W., Donges, J. F. and Kurths, J. (2019). Deterministic limit of temporal difference 

reinforcement learning for stochastic games. Physical Review E, 99 (4), 043305. 

[4] Barlo, M., Carmona, G. and Sabourian, H. (2016). Bounded memory Folk Theorem. Journal 

of economic theory, 163, 728–774. 

[5] Beggs, A. W. (2005). On the convergence of reinforcement learning. Journal of economic theory, 

122 (1), 1–36. 

[6] Benveniste, A., Metivier, M. and Priouret, P. (1990). Adaptive Algorithms and Stochastic 

Approximations. Springer. 

[7] Bergemann, D. and V¨ aki, J. (2008). Bandit Problems. In S. N. Durlauf and L. E. Blume alim¨

(eds.), The New Palgrave Dictionary of Economics: Volume 1 – 8, London: Palgrave Macmillan UK, 

pp. 336–340. 

[8] Bloembergen, D., Tuyls, K., Hennes, D. and Kaisers, M. (2015). Evolutionary Dynamics of 

Multi-Agent Learning: A Survey. Journal of Artificial Intelligence Research, 53, 659–697. 

[9] Börgers, T. and Sarin, R. (1997). Learning Through Reinforcement and Replicator Dynamics. 

Journal of economic theory, 77 (1), 1–14. 

[10] Chen, L., Mislove, A. and Wilson, C. (2016). An Empirical Analysis of Algorithmic Pricing 

on Amazon Marketplace. In Proceedings of the 25th International Conference on World Wide Web, 

WWW ’16, Republic and Canton of Geneva, Switzerland: International World Wide Web Confer-

ences Steering Committee, pp. 1339–1349. 
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[30] Kühn, K.-U. and Tadelis, S. (2018). The Economics of Algorithmic Pricing: Is collusion really 

inevitable? 

[31] Leufkens, K. and Peeters, R. (2011). Price dynamics and collusion under short-run price com-

mitments. International Journal of Industrial Organization, 29 (1), 134–153. 

[32] Maskin, E. and Tirole, J. (1988). A Theory of Dynamic Oligopoly, II: Price Competition, Kinked 

Demand Curves, and Edgeworth Cycles. Econometrica, 56 (3), 571–599. 

[33] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., 

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, 

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. and Has-

sabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518 (7540), 

529–533. 

[34] Rodrigues Gomes, E. and Kowalczyk, R. (2009). Dynamic Analysis of Multiagent Q-learning 

with E-greedy Exploration. In Proceedings of the 26th Annual International Conference on Machine 

Learning, ICML ’09, New York, NY, USA: ACM, pp. 369–376. 

[35] Roth, A. E. and Erev, I. (1995). Learning in extensive-form games: Experimental data and simple 

dynamic models in the intermediate term. Games and economic behavior, 8 (1), 164–212. 

[36] Salcedo, B. (2015). Pricing Algorithms and Tacit Collusion. 

[37] Shoham, Y., Powers, R., Grenager, T. and Others (2007). If multi-agent learning is the 

answer, what is the question? Artificial intelligence, 171 (7), 365–377. 

[38] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., 

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., 

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., 

Kavukcuoglu, K., Graepel, T. and Hassabis, D. (2016). Mastering the game of Go with deep 

neural networks and tree search. Nature, 529 (7587), 484–489. 

[39] —, Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., 

 Electronic copy available at: https://ssrn.com/abstract=3304991 



42 ` E. CALVANO, G. CALZOLARI, V. DENICOL O, S. PASTORELLO 

Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K. and Hassabis, D. (2018). 

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. 

Science, 362 (6419), 1140–1144. 

[40] —, Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., 

Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den 

Driessche, G., Graepel, T. and Hassabis, D. (2017). Mastering the game of Go without human 

knowledge. Nature, 550 (7676), 354–359. 

[41] Singh, N. and Vives, X. (1984). Price and quantity competition in a differentiated duopoly. The 

Rand journal of economics, pp. 546–554. 

[42] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press. 

[43] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru, J. and 

Vicente, R. (2017). Multiagent cooperation and competition with deep reinforcement learning. 

PloS one, 12 (4), e0172395. 

[44] Tesauro, G. and Kephart, J. O. (2002). Pricing in Agent Economies Using Multi-Agent Q-

Learning. Autonomous agents and multi-agent systems, 5 (3), 289–304. 

[45] Tyagi, R. K. (1999). On the relationship between product substitutability and tacit collusion. 

Managerial and Decision Economics, 20 (6), 293–298. 

[46] Waltman, L. and Kaymak, U. (2008). Q-learning agents in a Cournot oligopoly model. Journal 

of economic dynamics & control, 32 (10), 3275–3293. 

[47] Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, King’s College, Cam-

bridge. 

[48] — and Dayan, P. (1992). Q-learning. Machine learning, 8 (3), 279–292. 

[49] Wunder, M., Littman, M. L. and Babes, M. (2010). Classes of multiagent q-learning dynam-

ics with epsilon-greedy exploration. Proceedings of the 27th International Conference on Machine 

Learning. 

 Electronic copy available at: https://ssrn.com/abstract=3304991 


	Introduction
	Q-Learning
	Single-agent problems
	Estimating the Q-matrix

	Convergence and off-the-job training
	Q-learning in repeated games
	Convergence in theory
	Beyond Q-learning
	Deep learning
	Joint learning
	State of the art


	The literature
	Staggered prices
	Cournot competition
	Repeated prisoner's dilemma
	Reinforcement learning in economics

	Experiment design
	Economic environment
	Discretization of the action space
	Memory

	Exploration
	Initialization
	Convergence
	Experiments and outcomes

	Results
	Learning and experimentation
	Convergence
	Consistency
	Equilibrium play
	Outcomes
	Strategies
	Competitive environments
	Deviations and punishments


	Robustness
	Number of players
	Asymmetric firms
	Stochastic demand
	Variable market structure
	Memory
	Product substitutability
	Linear demand
	Finer discretization
	Asymmetric learning

	Conclusion

